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Construction of anomalously bent biphenyl structure
using conformational properties of calix[4]amide
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Abstract—C2v-symmetrical cyclic tetramers of aromatic amides were simply synthesized in moderate yield by condensation reaction
of N,N 0-dimethyl-1,3-phenylenediamine and isophthalic acid derivatives using dichlorotriphenylphosphorane. The calix[4]amides
exist in 1,3-alternate structure with cis conformation of tertiary aromatic amides, which were shown to be a versatile scaffold leading
to a bowl-shaped macrocyclic compound possessing a anomalously strained structure, a bent hinge angle between two aromatic ring
planes of biphenyl moiety, via an intramolecular ligation reaction.
� 2006 Elsevier Ltd. All rights reserved.
Since the discovery of the fullerenes,1 nonplanar poly-
cyclic aromatic compounds having a deformed alkyne
and aromatic surface under highly strained environment
have attracted considerable interest in the field of exper-
imental and theoretical chemistry because of their many
exploitable properties, such as specific reactivity for
chemical transformation, and their unique electronic
property.2 Bowl-shaped p-conjugated compounds such
as corannulene and sumanene have been reported as
model fullerene compounds.3 Recently, simpler non-
planar aromatic compounds consisting of pyrenes,4

phenylacetylenes,5 and related compounds6 have been
effectively constructed by using cyclophane chemistry.7

Namely, intramolecular reactions of para- and meta-
substituted rings in the cyclophane as precursors result
in the formation of corresponding bent and distorted
entities, due to the molecular strain of cyclic frame-
works. Thus, proper rigid frameworks are a useful tool
for the construction of bent structures, and much more
rigid linkages between each aromatic ring are important
for the highly distortional structures, because the con-
formation of the deformed entity was retained by the
force of the rigid cyclic framework. Previously, we have
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reported the formation of cyclic oligomers of aromatic
amides8 based on the cis conformational preference of
N-methylated amides.9 Among these, a cyclic tetramer
of 3-(methylamino)benzoic acid shows a stable and rigid
structure with four cis-amide bonds. In this study, we
demonstrate that the folded calix[4]amide structure is a
useful scaffold for an easy synthesis of an unusual
strained structure possessing a bent hinge angle between
two aromatic rings in a biphenyl moiety, which is the
fullerene fragment, especially higher fullerene ones.

We designed a novel C2v-symmetric cyclic tetramer of
tertiary aromatic amides (1) as a versatile scaffold for
the synthesis of constrained compounds. This calix[4]-
amide was synthesized by a direct condensation reaction
of N,N 0-dimethyl-1,3-phenylenediamine with isophthalic
acid using dichlorotriphenylphosphorane as a condensa-
tion reagent (Scheme 1), which is a very effective method
for the construction of macrocyclic aromatic amide
architectures.10 The mixture of N,N 0-dimethyl-1,3-
phenylenediamine and isophthalic acid (1:1 in molar
ratio) was treated with 2.4 equiv of Ph3PCl2 in 1,1,2,2-
tetrachloroethane (50 mM) at 120 �C for 6 h. The crude
product was purified by gel permeation chromatography
to give the macrocyclic aromatic amide 1 as a major
compound in a 41% yield.
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The structure of macrocycle 1 was determined by X-ray
crystallographic analysis.11 Single crystals were obtained
from a mixture of chloroform and ethyl acetate solution
(1:1) by a slow evaporation of the solvent at an ambient
temperature for 4 days. The ORTEP views of the crystal
structure corresponded to the 1,3-alternate structure,
indicating two benzene rings pointing up and the other
two benzene rings pointing down, resulting in a pseudo
C2v-symmetry (Fig. 1), which is similar to the crystal
structure of the cyclic tetramer of 3-(methylamino)ben-
zoic acid.12 The cyclic molecule had a small cavity sur-
rounded by four benzene rings. Each amide bond
existed in cis conformation, where the torsion angles
of the four amide bonds (CPh–C–N–CPh) were 39.2�,
32.1�, 30.0�, and 18.9�; those of Ar-CO were 54.4�,
65.2�, 50.5�, and 80.8�; and those of Ar-NCMe were
79.0�, 71.7�, 75.0�, and 78.1� (averaged torsion angles
in 1 were 30.1�, 59.3�, and 74.9�, respectively). The dihe-
dral angles of two cofacial pairs of aromatic rings were
highly bent, at 75.6� and 75.0�, which were ascribed to
the rigid framework of macrocycle 1 bearing the cis-
preference of the tertiary aromatic amide.

From the crystal structure of 1, we anticipated a bowl-
shaped macrocyclic compound with a severely distor-
tional moiety, through intramolecular reaction in a
functionalized C2v-symmetrical calix[4]amide derived
from meta-substituted isophthalic acid and N,N 0-di-
methyl-1,3-phenylenediamine. Thus, macrocycle 3 was
synthesized according to Scheme 2. The condensation
reaction of N,N 0-dimethyl-1,3-phenylenediamine with
5-iodoisophthalic acid similarly gave macrocycle 2
(21%),13 which was then converted to cross-linked
macrocycle 3 in a 67% yield by a palladium-catalyzed
intramolecular coupling reaction.
Figure 1. ORTEP view of the crystal structure of macrocycle 1: (a) a
top view and (b) a side view. The thermal ellipsoids are drawn at the
50% probability level (water molecules are omitted for simplicity).
A single crystal suitable for X-ray analysis was obtained
by allowing a solution of 3 in chloroform/ethyl acetate/
ethanol to stand at an ambient temperature for 1 week.
The crystal structure of 3 indicates an unusual and inter-
esting structural feature (Fig. 2).11 The torsion angle of
the tertiary aromatic amide and the hinge angle between
a cofacial pair of non-cross-linked aromatic rings were
similar to those of macrocycle 1. However, the most sig-
nificant aspect was that the hinge angle14 between two
the benzene rings in the cross-linked parts of 3 was
50.1� and 51.7�, and their torsion angle (C4–C5–C15–
C16) was 0.2� and 8.5�.15 That is, the framework of
macrocycle 3, due to the cis conformational preference
of the tertiary aromatic amide, possessed considerable
rigidity to generate a remarkable strained entity.

To evaluate this anomalous feature of the biphenyl
moiety (A) embedded in macrocycle 3, DFT calculations
Figure 2. ORTEP view of the crystal structure of macrocycle 3: (a) a
top view; (b) a side view. The thermal ellipsoids are drawn at the 50%
probability level (water molecules are omitted for simplicity); and (c)
ORTEP view of the biphenyl moiety of 3.
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were performed on simple biphenyl as a model
compound at the B3LYP/6-31G(d) level, resulting in
an energy profile as a function of hinge angle and
torsion angle of mutual phenyl rings (see Supplementary
data). The gas phase calculations indicated that the
structural strain of A was very high, and hence its rela-
tive energy was estimated to be much higher (16 kcal/
mol) than that of the most stable simple biphenyl. Very
limited examples of the strained biphenyl in the ground
state have been reported. Therefore, the high yield in
the synthesis of 3 was due to the conformational prop-
erty of the partial structures during macrocyclization.

In conclusion, we have described that the synthesis of
the bowl-shaped macrocycle with the highly strained
moiety can be easily achieved by the intramolecular
homocoupling reaction of the C2v-symmetrical N-meth-
ylated calix[4]amide in a moderate yield. We believe that
calix[4]amides with a rigid macrocyclic framework can
be used as the scaffold for generating various distor-
tional structures. The creation of a series of exceptional
deformed molecules possessing alkyne and alkene parts,
which are expected to exhibit a specific reactivity for
chemical transformations and uncommon electronic
properties, is currently under investigation.
Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.tetlet.
2006.10.062.
References and notes

1. (a) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.;
Smalley, R. E. Nature 1985, 318, 162–163; (b) Krätschmer,
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